
Evolutionary algorithms

• Simple genetic algorithms 

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck



Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to discrete constraint optimization 
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good solutions 
quickly

don't find exact solutions
can be much faster
can deal with problems that are numerical and not in a 

“nice” form (eg., linear)



Hill-Climbing

Hill-climbing is arguably the simplest heuristic 
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.



Neighborhood Search
Important choice in hill-climbing: which 

neighborhoods to consider
Add a small value to each coordinate? Substruct a small 

value from each coordinate?



Large Neighborhood Search
Iteratively select a random 

subset of variables of 
limited size, find an 
optimal assignment for 
these variables, assuming 
the others are fixed
Requires the availability 

of an algorithm to solve 
the intermediate 
problems optimally
(linear programming, 
CP, ..)



Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms



Advantages of GAs
Evolution and natural selection has proven to be a 

robust method 

A “black box” approach that can easily be applied to 
many optimization problems

GAs can be easily parallelized and run on multiple 
machines



Some definitions
Population: a collection of solutions for the studied 

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a 

single solution
Gene: part of a chromosome, usually representing a 

variable as part of the solution



Some definitions
Encoding: conversion of a solution to its equivalent 

representation (chromosome)
Decoding: conversion of a chromosome (genotype) 

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a 

solution
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Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children



Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h  P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h  P with the highest Fitness



Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)



Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. The 
programmer is free to choose which methods to use for 
all three steps.
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01100
10001
11010
00111
11000
10110

01100
10001
10001
11000
10110
10110

34
48
23
15
41
50

selection

fitnessindividuals

Sum = 211

p = 0.16
p = 0.23
p = 0.11
p = 0.07
p = 0.19
p = 0.24

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00



Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability that the better individual wins
 probability of winning depends on fitness

Tournament selection can also be combined with 
roulette-wheel selection.



Crossover
Exchange parts of chromosome with a crossover 

probability (pc is usually about 0.8)
i.e., with probability 1-pc no crossover takes place

Select crossover points randomly
One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1



N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0



Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask



Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit
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Encoding and decoding

Common coding methods

“standard” binary integer coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)



Gray Coding

Aim: binary coding of integers such that integers x 
and y for which |x-y|=1 only differ in one bit

Dec  Gray   Binary
 0   000    000
 1   001    001
 2   011    010
 3   010    011
 4   110    100
 5   111    101
 6   101    110
 7   100    111



Gray Coding
Codes for n=1: (i.e., integers 0, 1)
0  1 

Codes for n=2: (i.e., integers 0, 1, 2, 3)
Reflected entries for n=0:

 1 0
Prefix old entries with 0:
00 01
Prefix reflected entries with 1:

 11 10
Codes hence:
00 01 11 10

Codes for n=3: (i.e., integers 0, 1, 2, …, 7)
Reflected entries for n=2:

        10  11   01   00
Codes hence:
000 001 011 010 110 111 101 100

0
1

0
1

00
01

00
01
11
10

000
001
011
010



Gray Coding
Given a “normal” bit representation, how to calculate 

the Gray code?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the Gray code  iff the bit before it has value 1 in the original code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101



Gray Coding
Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) ^ num



Gray Coding
Given a Gray code, how to calculate a “normal” bit 

representation?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the “normal” code (as compared to the Gray code)  iff the bit 
before it has value 1 in the “normal” code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101



Gray Coding
Gray coding does not avoid that integers far away from 

each other can have similar codes 
00000=0 
10000=31

 Mutation can still change numbers a lot→

Gray coding only ensures that there always is a one-bit 
mutation to transform integer x into integer x+1 or x-1.



Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a 
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)



Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)



Mutations for Permutations
Insert mutation:

Pick two allele values at random
Move the second to follow the first, shifting the rest 

along to accommodate
Note: this preserves most of the order and adjacency 

information; changes the position of numbers a lot

Removed Adjancency: (2,3), (4,5), (5,6)
Added Adjacency: (2,5), (4,6), (5,3)
Removed orders: 3->5, 4->5
Added orders: 5->3, 5->4
Changed positions: 3, 4, 5



Mutations for Permutations
Swap mutation:

Pick two alleles at random and swap their positions
Disrupts adjacency information and order more; 

preserves positions

Removed Adjancency: (1,2), (2,3), (4,5), (5,6)
Added Adjacency: (1,5), (2,6), (4,2), (5,3)
Removed order: 2->3, 2->4, 2->5, 3->5, 4->5
Added order: 5->3, 5->4, 3->2, 4->2, 5->2
Changed positions:        2, 5



Mutations for Permutations
Inversion mutation:

Pick two alleles at random and then invert the substring 
between them.

Preserves most adjacency information (only breaks two 
links) but disruptive for order information



Mutations for Permutations
Scramble mutation:

Pick a subset of genes at random (not necessarily 
consecutive)

Randomly rearrange the alleles in those positions



Crossover for Permutations
Order one crossover:

Choose an arbitrary part from the first parent, copy this part to the 
first child

Copy the numbers that are not in the first part, to the first child:
 starting right from cut point of the copied part,
 using the order of the second parent and wrapping around at the end

Analogous for the second child, with parent roles reversed



Crossover for Permutations
Partially Mapped Crossover (PMX):

Choose random segment and copy it from P1

Starting from the first crossover point look for elements in that segment of P2 
that have not been copied

For each of these i look in the offspring to see what element j has been copied in 
its place from P1

Place i into the position occupied j in P2, since we know that we will not be 
putting j there (as is already in offspring)

If the place occupied by j in P2 has already been filled in the offspring k, put i in 
the position occupied by k in P2



Crossover for Permutations
Partially Mapped Crossover (PMX):

Having dealt with the elements from the crossover 
segment, the rest of the offspring can be filled from P2.

Idea: maintain position



Order vs Position in 
Permutations
Order, but not position of numbers is important in 

problems such as the traveling salesman problem 
(visiting all cities in a certain order)

Position, but not order of numbers is important in 
problems such as allocating visitors in hotels to rooms 
(visitors have to be allocated once to one room, but the 
order of the allocation does not matter)



Evolutionary Strategies
Numerical optimization problems: 

Given a function f from real numbers to a real number
Find coordinates at which f is maximized 



Evolutionary Strategies
Main idea: 

individuals consist of vectors of real numbers
(not binary)

Redefinitions of
selection
crossover 
mutation

Operations executed in the order 
crossover  mutation  selection→ →



ES: Selection
Not performed before mutation and crossover, but 

after these operations
It is assumed mutation (& crossover) generate 
 > m individuals (where m is population size)
(typically  ≈ 7m)

Deterministically eliminate worst individuals from
children only: (m,)-ES  escapes from local optima →

more easily
parents and children: (m+)-ES  doesn't forget →

good solutions (“elitist selection”)

(Notational convention)



ES: Basic Mutation
An individual is a vector 

Mutate each xi by sampling a change from a normal 
distribution:
                               where

“sampled from”

Simple modification: 
mutation rate for each xi

Major question:
How to set     or      ?



ES: Basic Mutation
An algorithm for setting global     : 

 Count the number Gs of successful 
mutations
 Compute the ratio of successful mutations

ps = Gs / G

 Update strategy parameters according to

until termination 

σ i={
σ i/ c if ps> 0 .2

σ i c if ps< 0 .2

σ i if ps=0 .2

]0.1,8.0[c

Improved fitness

“1/5 rule”

MAIN IDEA: make search more efficient
by increasing mutation rate if this seems safe

Increase mutation
rate as it appears better 
solutions are far away



Basic (1+1) ES
Common use of the 1/5 rule



ES Mutation: 
Strategy Parameters
An individual is a vector

or 
where the       are the standard deviations

Mutate strategy parameter(s) first
Order is important!

If the resulting child has high fitness, it is assumed 
that:
quality of phenotype is good
quality of strategy parameters that led to this phenotype 

is good



ES Mutation: 
Strategy Parameters
Mutation of one strategy parameter



ES Mutation:
Strategy Parameters
Here       is the mutation rate

     bigger: faster but more imprecise
     smaller: slower but more imprecise

Recommendation for setting      : 



ES Mutation: 
Strategy Parameters

One parameter for each 
individual

2 dimensional genotype

5 individuals 

Line indicates points with equal fitness



ES Mutation:
Strategy Parameters

One parameter for each 
dimension

2 dimensional genotype

5 individuals 



ES Mutation: 
Strategy Parameters
Mutation of all strategy parameters

Sample from normal distribution, 
the same for all parameters

Update for this specific parameter



ES Mutation:
Strategy Parameters

An individual is a vector

where       encode angles

Also here mutation can 
be defined

Mathematical details 
skipped



ES Crossover / Recombination
Application of operator creates one child (not two)
Is applied       times to create an offspring population of 

size        (on which then mutation and selection is applied)
Per offspring gene two parent genes are involved
Choices:

combination of  two parent genes: 
 average value of parents (intermediate recombination)
 value of one randomly selected parent (discrete recombination)

choice of parents:
 a different pair of parents for each gene (global recombination) 
 the same pair of parents for all genes



ES Crossover / Recombination
Default choice: discrete recombination on phenotype,

intermediate recombination on strategy parameters



GAs vs. ES
Genetic algorithms
Crossover is the main 

operator
Uses also mutation

Encoding for problem 
representation

Biased selection of the 
parents

Algorithm parameters 
often fixed

Selection  Crossover  → →
Mutation

Evolution strategies
Mutation is the main 

operator
Uses also crossover 

(recombination)
No encoding needed for 

problem representation
Random selection of the 

parents
Adaptive set of algorithm 

parameters (strategy 
parameters)

Crossover  Mutation  → →
Selection



Genetic Programming
Goal: to learn computer programs from examples (like in 

machine learning and data mining)

Main idea: 
represent (simple) computer programs in individuals of 
arbitrary size

Redefinitions of
selection
crossover 
mutation



Individuals are Program Trees / 
Parse Trees
Representation of

Arithmetic formulas

Logical formulas

Computer programs



Representation of 
Arithmetic Formula as Tree



Representation of
Logical Formula 



Representation of
Computer Programs



Representation
Trees consisting of:

terminals (leaves)
 constants
 variables (inputs to the program/formula)

functions of fixed arity (internal nodes)



Considerations in Function 
Selection
Closure: any function should be well-defined for all 

arguments 

Example: { *, / } is not closed as division is not well 
defined if the second argument is 0  redefine /.→

Sufficiency: the function and terminal set should be 
able to represent a desirable solution



Evolutionary Cycle
Fixed population size
Create a new population by randomly selecting an 

operation to apply, each of which adds one or two 
individuals into the new population, starting from one 
or two fitness proportionally selected individuals:
reproduction (copying)
one of many crossover operations
one of many mutation operations



Initialization
Given is a maximum depth on trees Dmax

Full method:
 for each level < Dmax insert a node with function symbol

(recursively add children of appropriate types)
 for level Dmax insert a node with a terminal

Grow method:
 for each level < Dmax insert a node with either a terminal or a 

function symbol (and recursively add children of appropriate types 
to these nodes)

 for level Dmax insert a node with a terminal

Combined method: half of the population full, the other grown



Mutation
Operator name Description

Point mutation single node exchanged against 
random node of same class

Permutation arguments of a node permuted

Hoist new individual generated from 
subtree

Expansion terminal exchanged against 
random subtree

Collapse subtree subtree exchanged against 
random terminal

Subtree mutation subtree exchanged against 
random subtree



Point Mutation



Permutation



Hoist



Expansion Mutation



Collapse Subtree Mutation



Subtree Mutation



Crossover



Self-Crossover



Bloat
“Survival of the fattest”, i.e. the tree sizes in the 

populations increase over time

Countermeasures:
simplification
penalty for large trees
hard constraints on the size of trees resulting from 

operations 



Editing Operator
An operation that simplifies expressions
Examples:

X AND X  X→
X OR X  X→
NOT(NOT(X))  X→
X + 0  X→
X . 1  X→
X . 0  0→
….



Example – Symbolic Regression
Pythagorean Theorem

22 bac 
Negnevitsky 2004

Underlying function:

Fitness cases:

Language elements: +, -, *, /, sqrt, a, b

Not (necessarily)
linear





Example – Symbolic Regression
Approximation of sin(x)
Given examples (x,sin(x)) with x in {0,1,...,9}
Find a good approximation of sin(x)



Example – Symbolic Regression
Approximation of sin(x)



GAs vs. GP
Genetic algorithms
Chromosomes represent 

coded solutions
Fixed length 

chromosomes
A small set of well-

defined genetic 
operators

Conceptually simple
Fixed order of operators

Genetic programming
Chromosomes represent 

executable code
Variable length 

chromosomes
More complex genetic 

operators required
Conceptually complex
Order of operators not 

fixed
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