
Evolutionary algorithms

• Simple genetic algorithms

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck

Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to discrete constraint optimization
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good solutions
quickly

don't find exact solutions
can be much faster
can deal with problems that are numerical and not in a

“nice” form (eg., linear)

Hill-Climbing

Hill-climbing is arguably the simplest heuristic
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.

Neighborhood Search
Important choice in hill-climbing: which

neighborhoods to consider
Add a small value to each coordinate? Substruct a small

value from each coordinate?

Large Neighborhood Search
Iteratively select a random

subset of variables of
limited size, find an
optimal assignment for
these variables, assuming
the others are fixed
Requires the availability

of an algorithm to solve
the intermediate
problems optimally
(linear programming,
CP, ..)

Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms

Advantages of GAs
Evolution and natural selection has proven to be a

robust method

A “black box” approach that can easily be applied to
many optimization problems

GAs can be easily parallelized and run on multiple
machines

Some definitions
Population: a collection of solutions for the studied

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a

single solution
Gene: part of a chromosome, usually representing a

variable as part of the solution

Some definitions
Encoding: conversion of a solution to its equivalent

representation (chromosome)
Decoding: conversion of a chromosome (genotype)

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a

solution

Generation t

1 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1

0 1 0 1

p
op

u
la

ti
on

x y

gene

chromosome

individual

solution fitness
(2,0)

(1,1)

(0,3)

(1,2)

(1,1)

4

2

3

3

2

Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children

Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h P with the highest Fitness

Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)

Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. The
programmer is free to choose which methods to use for
all three steps.

1
16%

2
23%

3
11%

4
7%

5
19%

6
24%

1
2
3
4
5
6

01100
10001
11010
00111
11000
10110

01100
10001
10001
11000
10110
10110

34
48
23
15
41
50

selection

fitnessindividuals

Sum = 211

p = 0.16
p = 0.23
p = 0.11
p = 0.07
p = 0.19
p = 0.24

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability that the better individual wins
 probability of winning depends on fitness

Tournament selection can also be combined with
roulette-wheel selection.

Crossover
Exchange parts of chromosome with a crossover

probability (pc is usually about 0.8)
i.e., with probability 1-pc no crossover takes place

Select crossover points randomly
One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1

N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0

Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask

Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit

10010110
01100010
10100100
10011001
01111101

. . .

. . .

. . .

. . .

10010110
01100010
10100100
10011101
01111001

. . .

. . .

. . .

. . .

SelectionSelection CrossoverCrossover MutationMutation

Current
generation

Next
generation

Elitism

reproduction

Encoding and decoding

Common coding methods

“standard” binary integer coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)

Gray Coding

Aim: binary coding of integers such that integers x
and y for which |x-y|=1 only differ in one bit

Dec Gray Binary
 0 000 000
 1 001 001
 2 011 010
 3 010 011
 4 110 100
 5 111 101
 6 101 110
 7 100 111

Gray Coding
Codes for n=1: (i.e., integers 0, 1)
0 1

Codes for n=2: (i.e., integers 0, 1, 2, 3)
Reflected entries for n=0:

 1 0
Prefix old entries with 0:
00 01
Prefix reflected entries with 1:

 11 10
Codes hence:
00 01 11 10

Codes for n=3: (i.e., integers 0, 1, 2, …, 7)
Reflected entries for n=2:

 10 11 01 00
Codes hence:
000 001 011 010 110 111 101 100

0
1

0
1

00
01

00
01
11
10

000
001
011
010

Gray Coding
Given a “normal” bit representation, how to calculate

the Gray code?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101

Gray Coding
Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) ^ num

Gray Coding
Given a Gray code, how to calculate a “normal” bit

representation?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the “normal” code (as compared to the Gray code) iff the bit
before it has value 1 in the “normal” code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101

Gray Coding
Gray coding does not avoid that integers far away from

each other can have similar codes
00000=0
10000=31

 Mutation can still change numbers a lot→

Gray coding only ensures that there always is a one-bit
mutation to transform integer x into integer x+1 or x-1.

Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)

Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)

Mutations for Permutations
Insert mutation:

Pick two allele values at random
Move the second to follow the first, shifting the rest

along to accommodate
Note: this preserves most of the order and adjacency

information; changes the position of numbers a lot

Removed Adjancency: (2,3), (4,5), (5,6)
Added Adjacency: (2,5), (4,6), (5,3)
Removed orders: 3->5, 4->5
Added orders: 5->3, 5->4
Changed positions: 3, 4, 5

Mutations for Permutations
Swap mutation:

Pick two alleles at random and swap their positions
Disrupts adjacency information and order more;

preserves positions

Removed Adjancency: (1,2), (2,3), (4,5), (5,6)
Added Adjacency: (1,5), (2,6), (4,2), (5,3)
Removed order: 2->3, 2->4, 2->5, 3->5, 4->5
Added order: 5->3, 5->4, 3->2, 4->2, 5->2
Changed positions: 2, 5

Mutations for Permutations
Inversion mutation:

Pick two alleles at random and then invert the substring
between them.

Preserves most adjacency information (only breaks two
links) but disruptive for order information

Mutations for Permutations
Scramble mutation:

Pick a subset of genes at random (not necessarily
consecutive)

Randomly rearrange the alleles in those positions

Crossover for Permutations
Order one crossover:

Choose an arbitrary part from the first parent, copy this part to the
first child

Copy the numbers that are not in the first part, to the first child:
 starting right from cut point of the copied part,
 using the order of the second parent and wrapping around at the end

Analogous for the second child, with parent roles reversed

Crossover for Permutations
Partially Mapped Crossover (PMX):

Choose random segment and copy it from P1

Starting from the first crossover point look for elements in that segment of P2
that have not been copied

For each of these i look in the offspring to see what element j has been copied in
its place from P1

Place i into the position occupied j in P2, since we know that we will not be
putting j there (as is already in offspring)

If the place occupied by j in P2 has already been filled in the offspring k, put i in
the position occupied by k in P2

Crossover for Permutations
Partially Mapped Crossover (PMX):

Having dealt with the elements from the crossover
segment, the rest of the offspring can be filled from P2.

Idea: maintain position

Order vs Position in
Permutations
Order, but not position of numbers is important in

problems such as the traveling salesman problem
(visiting all cities in a certain order)

Position, but not order of numbers is important in
problems such as allocating visitors in hotels to rooms
(visitors have to be allocated once to one room, but the
order of the allocation does not matter)

Evolutionary Strategies
Numerical optimization problems:

Given a function f from real numbers to a real number
Find coordinates at which f is maximized

Evolutionary Strategies
Main idea:

individuals consist of vectors of real numbers
(not binary)

Redefinitions of
selection
crossover
mutation

Operations executed in the order
crossover mutation selection→ →

ES: Selection
Not performed before mutation and crossover, but

after these operations
It is assumed mutation (& crossover) generate
 > m individuals (where m is population size)
(typically ≈ 7m)

Deterministically eliminate worst individuals from
children only: (m,)-ES escapes from local optima →

more easily
parents and children: (m+)-ES doesn't forget →

good solutions (“elitist selection”)

(Notational convention)

ES: Basic Mutation
An individual is a vector

Mutate each xi by sampling a change from a normal
distribution:
 where

“sampled from”

Simple modification:
mutation rate for each xi

Major question:
How to set or ?

ES: Basic Mutation
An algorithm for setting global :

 Count the number Gs of successful
mutations
 Compute the ratio of successful mutations

ps = Gs / G

 Update strategy parameters according to

until termination

σ i={
σ i/ c if ps> 0 .2

σ i c if ps< 0 .2

σ i if ps=0 .2

]0.1,8.0[c

Improved fitness

“1/5 rule”

MAIN IDEA: make search more efficient
by increasing mutation rate if this seems safe

Increase mutation
rate as it appears better
solutions are far away

Basic (1+1) ES
Common use of the 1/5 rule

ES Mutation:
Strategy Parameters
An individual is a vector

or
where the are the standard deviations

Mutate strategy parameter(s) first
Order is important!

If the resulting child has high fitness, it is assumed
that:
quality of phenotype is good
quality of strategy parameters that led to this phenotype

is good

ES Mutation:
Strategy Parameters
Mutation of one strategy parameter

ES Mutation:
Strategy Parameters
Here is the mutation rate

 bigger: faster but more imprecise
 smaller: slower but more imprecise

Recommendation for setting :

ES Mutation:
Strategy Parameters

One parameter for each
individual

2 dimensional genotype

5 individuals

Line indicates points with equal fitness

ES Mutation:
Strategy Parameters

One parameter for each
dimension

2 dimensional genotype

5 individuals

ES Mutation:
Strategy Parameters
Mutation of all strategy parameters

Sample from normal distribution,
the same for all parameters

Update for this specific parameter

ES Mutation:
Strategy Parameters

An individual is a vector

where encode angles

Also here mutation can
be defined

Mathematical details
skipped

ES Crossover / Recombination
Application of operator creates one child (not two)
Is applied times to create an offspring population of

size (on which then mutation and selection is applied)
Per offspring gene two parent genes are involved
Choices:

combination of two parent genes:
 average value of parents (intermediate recombination)
 value of one randomly selected parent (discrete recombination)

choice of parents:
 a different pair of parents for each gene (global recombination)
 the same pair of parents for all genes

ES Crossover / Recombination
Default choice: discrete recombination on phenotype,

intermediate recombination on strategy parameters

GAs vs. ES
Genetic algorithms
Crossover is the main

operator
Uses also mutation

Encoding for problem
representation

Biased selection of the
parents

Algorithm parameters
often fixed

Selection Crossover → →
Mutation

Evolution strategies
Mutation is the main

operator
Uses also crossover

(recombination)
No encoding needed for

problem representation
Random selection of the

parents
Adaptive set of algorithm

parameters (strategy
parameters)

Crossover Mutation → →
Selection

Genetic Programming
Goal: to learn computer programs from examples (like in

machine learning and data mining)

Main idea:
represent (simple) computer programs in individuals of
arbitrary size

Redefinitions of
selection
crossover
mutation

Individuals are Program Trees /
Parse Trees
Representation of

Arithmetic formulas

Logical formulas

Computer programs

Representation of
Arithmetic Formula as Tree

Representation of
Logical Formula

Representation of
Computer Programs

Representation
Trees consisting of:

terminals (leaves)
 constants
 variables (inputs to the program/formula)

functions of fixed arity (internal nodes)

Considerations in Function
Selection
Closure: any function should be well-defined for all

arguments

Example: { *, / } is not closed as division is not well
defined if the second argument is 0 redefine /.→

Sufficiency: the function and terminal set should be
able to represent a desirable solution

Evolutionary Cycle
Fixed population size
Create a new population by randomly selecting an

operation to apply, each of which adds one or two
individuals into the new population, starting from one
or two fitness proportionally selected individuals:
reproduction (copying)
one of many crossover operations
one of many mutation operations

Initialization
Given is a maximum depth on trees Dmax

Full method:
 for each level < Dmax insert a node with function symbol

(recursively add children of appropriate types)
 for level Dmax insert a node with a terminal

Grow method:
 for each level < Dmax insert a node with either a terminal or a

function symbol (and recursively add children of appropriate types
to these nodes)

 for level Dmax insert a node with a terminal

Combined method: half of the population full, the other grown

Mutation
Operator name Description

Point mutation single node exchanged against
random node of same class

Permutation arguments of a node permuted

Hoist new individual generated from
subtree

Expansion terminal exchanged against
random subtree

Collapse subtree subtree exchanged against
random terminal

Subtree mutation subtree exchanged against
random subtree

Point Mutation

Permutation

Hoist

Expansion Mutation

Collapse Subtree Mutation

Subtree Mutation

Crossover

Self-Crossover

Bloat
“Survival of the fattest”, i.e. the tree sizes in the

populations increase over time

Countermeasures:
simplification
penalty for large trees
hard constraints on the size of trees resulting from

operations

Editing Operator
An operation that simplifies expressions
Examples:

X AND X X→
X OR X X→
NOT(NOT(X)) X→
X + 0 X→
X . 1 X→
X . 0 0→
….

Example – Symbolic Regression
Pythagorean Theorem

22 bac
Negnevitsky 2004

Underlying function:

Fitness cases:

Language elements: +, -, *, /, sqrt, a, b

Not (necessarily)
linear

Example – Symbolic Regression
Approximation of sin(x)
Given examples (x,sin(x)) with x in {0,1,...,9}
Find a good approximation of sin(x)

Example – Symbolic Regression
Approximation of sin(x)

GAs vs. GP
Genetic algorithms
Chromosomes represent

coded solutions
Fixed length

chromosomes
A small set of well-

defined genetic
operators

Conceptually simple
Fixed order of operators

Genetic programming
Chromosomes represent

executable code
Variable length

chromosomes
More complex genetic

operators required
Conceptually complex
Order of operators not

fixed

	FEM 31001 Computational Intelligence
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Advantages of GAs
	Some definitions
	Slide 12
	GA terminology
	Genetic algorithm
	Pseudo code
	Termination criteria
	Reproduction
	Roulette-wheel selection
	Slide 19
	Tournament selection
	Crossover
	N-point crossover
	Uniform crossover
	Mutation
	GA iteration
	Encoding and decoding
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Handling constraints
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	GAs vs. ES
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Example – Pythagorean Theorem
	Results
	Slide 93
	Slide 94
	GAs vs. GP

